Normal view MARC view ISBD view

Evaluation of anti-hypertrophic potential of camellia sinesis in isoproterenol induced cardiac hypertrophy

By: Doss, V. A.
Contributor(s): Parthibhan, Jeevitha | Kuberapandian, Dharaniyambigai.
Publisher: M. P. Innovare Academic Sciences Pvt Ltd 2018Edition: Vol. 10(10), July-August.Description: 119-123.Subject(s): PHARMACEUTICSOnline resources: Click here In: International journal of pharmacy and pharmaceutical scienceSummary: Objective: Camellia sinensis (C. sinensis family-Theaceae) has potent antioxidant activity used in the treatment of cardiovascular disease. The present study evaluates the cardioprotective (anti-hypertrophic) effect of aqueous extract of C. sinensis in isoproterenol (ISO) induced cardiac hypertrophic rats. Methods: The beneficial effect of the green tea extract was examined by the administration of the aqueous extract of the leaves of C. sinensis (100 mg/kg b.w., oral., 7 d) in ISO (10 mg/kg b.w., subcutaneous.,7 d) induced cardiac hypertrophic rats with reference to the standard drug, losartan (50 mg/kg b.w., oral.,7 d) followed by biochemical estimations of glucose, protein, cholesterol, cardiac marker enzymes namely serum glutamate oxaloacetate transaminase (SGOT), serum glutamate pyruvate transaminase (SGPT) and lactate dehydrogenase (LDH) in serum and heart tissues thus collected at the end of 7 d. Results: The biochemical assays revealed significantly (P<0.05) increased glucose, protein, cholesterol, cardiac marker enzymes namely serum glutamate oxaloacetate transaminase (SGOT), serum glutamate pyruvate transaminase (SGPT) lactate dehydrogenase (LDH) and significantly(P<0.05) decreased in ISO induced cardiac hypertrophic rats that were reciprocated by the effect of plant extract.Conclusion: Thus, this study showed that the aqueous leaf extract of C. sinensispossesses potent effect against cardiac hypertrophy. This potential is hypothesized to be due to the......
Tags from this library: No tags from this library for this title. Log in to add tags.
    average rating: 0.0 (0 votes)
Item type Current location Call number Status Date due Barcode Item holds
Articles Abstract Database Articles Abstract Database School of Pharmacy
Archieval Section
Not for loan 2018429
Total holds: 0

Objective: Camellia sinensis (C. sinensis family-Theaceae) has potent antioxidant activity used in the treatment of cardiovascular disease. The present study evaluates the cardioprotective (anti-hypertrophic) effect of aqueous extract of C. sinensis in isoproterenol (ISO) induced cardiac hypertrophic rats. Methods: The beneficial effect of the green tea extract was examined by the administration of the aqueous extract of the leaves of C. sinensis (100 mg/kg b.w., oral., 7 d) in ISO (10 mg/kg b.w., subcutaneous.,7 d) induced cardiac hypertrophic rats with reference to the standard drug, losartan (50 mg/kg b.w., oral.,7 d) followed by biochemical estimations of glucose, protein, cholesterol, cardiac marker enzymes namely serum glutamate oxaloacetate transaminase (SGOT), serum glutamate pyruvate transaminase (SGPT) and lactate dehydrogenase (LDH) in serum and heart tissues thus collected at the end of 7 d. Results: The biochemical assays revealed significantly (P<0.05) increased glucose, protein, cholesterol, cardiac marker enzymes namely serum glutamate oxaloacetate transaminase (SGOT), serum glutamate pyruvate transaminase (SGPT) lactate dehydrogenase (LDH) and significantly(P<0.05) decreased in ISO induced cardiac hypertrophic rats that were reciprocated by the effect of plant extract.Conclusion: Thus, this study showed that the aqueous leaf extract of C. sinensispossesses potent effect against cardiac hypertrophy. This potential is hypothesized to be due to the......

There are no comments for this item.

Log in to your account to post a comment.
Unique Visitors hit counter Total Page Views free counter
Implemented and Maintained by AIKTC-KRRC (Central Library).
For any Suggestions/Query Contact to library or Email: librarian@aiktc.ac.in | Ph:+91 22 27481247
Website/OPAC best viewed in Mozilla Browser in 1366X768 Resolution.

Powered by Koha